Abstract

This paper presents an integrated self-aware computing model mitigating the power dissipation of a heterogeneous reconfigurable multicore architecture by dynamically scaling the operating frequency of each core. The power mitigation is achieved by equalizing the performance of all the cores for an uninterrupted exchange of data. The multicore platform consists of heterogeneous Coarse-Grained Reconfigurable Arrays (CGRAs) of application-specific sizes and a Reduced Instruction-Set Computing (RISC) core. The CGRAs and the RISC core are integrated with each other over a Network-on-Chip (NoC) of six nodes arranged in a topology of two rows and three columns. The RISC core constantly monitors and controls the performance of each CGRA accelerator by adjusting the operating frequencies unless the performance of all the CGRAs is optimally balanced over the platform. The CGRA cores on the platform are processing some of the most computationally-intensive signal processing algorithms while the RISC core establishes packet based synchronization between the cores for computation and communication. All the cores can access each other's computational and memory resources while processing the kernels simultaneously and independently of each other. Besides general-purpose processing and overall platform supervision, the RISC processor manages performance equalization among all the cores which mitigates the overall dynamic power dissipation by 20.7 % for a proof-of-concept test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.