Abstract

A stand-alone power system based on a photovoltaic array and wind generators that stores the excessive energy from renewable energy sources (RES) in the form of hydrogen via water electrolysis for future use in a polymer electrolyte membrane (PEM) fuel cell is currently in operation at Neo Olvio of Xanthi, Greece. Efficient power management strategies (PMSs) for the system have been developed. The PMSs have been assessed on their capacity to meet the power load requirements through effective utilization of the electrolyzer and fuel cell under variable energy generation from RES (solar and wind). The evaluation of the PMS has been performed through simulated experiments with anticipated conditions over a typical four-month time period for the region of installation. The key decision factors for the PMSs are the level of the power provided by the RES and the state of charge (SOC) of the accumulator. Therefore, the operating policies for the hydrogen production via water electrolysis and the hydrogen consumption at the fuel cell depend on the excess or shortage of power from the RES and the level of SOC. A parametric sensitivity analysis investigates the influence of major operating variables for the PMSs such as the minimum SOC level and the operating characteristics of the electrolyzer and the fuel cell in the performance of the integrated system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.