Abstract

In this paper, the optimization of a power management strategy of a fuel cell/battery/supercapacitor hybrid vehicular system is investigated, both offline and in real time. Two offline optimization algorithms, namely, dynamic programming and Pontryagin's minimum principle, are first compared. The offline optimum is used as a benchmark when designing a real-time strategy, which is an inevitable step since the offline optimum is not real-time capable and is oriented only toward minimizing hydrogen consumption, which may result in the unnecessary overloading of the battery. The design and optimization of the real-time strategy makes use of a multiobjective genetic algorithm while taking into account, apart from hydrogen consumption, other important factors, such as the slow dynamics of the fuel cell system and minimizing the battery power burden. As a result, the real-time strategy is found to consume slightly more hydrogen than the offline optimum; however, it dramatically improves system durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.