Abstract

Energy storage devices are necessary to address the issues associated with stochastic variation of generated power in a wind energy conversion system. This study explores the control and operational aspects of integrating a smart energy storage system (SESS) into a double-fed induction generator-based wind power system. The fuel-cell/electrolyser subsystem of SESS is employed to provide long-term energy balance by utilising H 2 as storage medium, whereas the superconducting magnetic energy storage is employed as buffer storage for transient compensation. The control schemes enable the integrated system to operate seamlessly in different modes fulfilling the operational requirements. Here, system configuration is proposed, control scheme is designed and the detailed dynamic modelling is developed for each component of the system. Simulation is carried out to study the control behaviour of wind turbines during the sudden load change and wind speed variations. The results demonstrate the applicability of the overall operational and control architecture for hybrid wind/storage operation. The control scheme of SESS and power management technique employed into the grid-side converter system, in particular, highlight the capability of the proposed system in managing intermittency and making it a dispatchable entity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call