Abstract
We study by theoretical analysis and by direct numerical simulation the dynamics of a wide class of asynchronous stochastic systems composed of many autocatalytic degrees of freedom. We describe the generic emergence of truncated power laws in the size distribution of their individual elements. The exponents $\alpha$ of these power laws are time independent and depend only on the way the elements with very small values are treated. These truncated power laws determine the collective time evolution of the system. In particular the global stochastic fluctuations of the system differ from the normal Gaussian noise according to the time and size scales at which these fluctuations are considered. We describe the ranges in which these fluctuations are parameterized respectively by: the Levy regime $\alpha < 2$, the power law decay with large exponent ($\alpha > 2$), and the exponential decay. Finally we relate these results to the large exponent power laws found in the actual behavior of the stock markets and to the exponential cut-off detected in certain recent measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.