Abstract

ABSTRACTPurposeThis study aimed to examine the effects of fatiguing power loading on neuromuscular properties, force production, and metabolic capacities during four phases of the menstrual cycle (MC): menstruation (M), midfollicular (mid FOL), ovulation (OV), and midluteal (mid LUT).MethodsSixteen eumenorrheic women performed sessions of maximal explosive leg press (2 × 10 at 60% one-repetition maximum load with 2-min recovery between sets). Serum hormones and neuromuscular responses were measured.ResultsThe loading protocol significantly decreased power (between −14.2% and −12.5%; P < 0.001) and maximal force production (between maximum voluntary force (MVC); −15.0% and −7.8%; P < 0.001–0.05), while decreasing activation level (between AL; −6.9% and −2.2%; P < 0.001–0.05) in all MC phases. The decreases in AL were greater during mid LUT (P < 0.01) compared with OV. Changes in MVC and AL were associated (r2 = 0.53; P < 0.01) at all MC phases. The decrease in EMG during MVC did not differ between the MC phases; however, mean power frequency was higher during M (+7.7%; P < 0.05) and mid LUT (+3.1%; P < 0.05) compared with OV (−7.5%). Resting twitch force decreased during mid FOL (−6.9%; P < 0.05) and mid LUT (−16.2%; P < 0.001), and these values were significantly decreased (P < 0.05) compared with OV. In addition, resting twitch force at mid LUT was lower (P < 0.01) compared with M. Blood lactate levels increased more (P < 0.05) during M compared with mid LUT. Some serum hormone concentrations were associated with fatigue-induced changes in neuromuscular properties and force production, but these correlations behaved differently between the MC phases.ConclusionsOV may offer a more favorable hormonal milieu for acute neural responses, whereas mid FOL and mid LUT seem to be superior for acute muscular responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.