Abstract

In this work, influence of hybrid nanofluids on heat transfer flow of a viscous fluid due to pressure gradient is discussed with innovative constant proportional Caputo fractional derivative. For this purpose, we consider an infinite vertical wall which is exponentially moving in the x-direction with variable temperature. Nanosized particles of Cu and $$\hbox {Al}_{2}\hbox {O}_{3}$$ are suspended in water, the base fluid. The governing equations of the problem are converted into dimensionless form. Further, we develop the constant proportional Caputo fractional model with a new operator with power law kernel which can be used to study the fluid behaviour for different values of fractional parameter at the present time. We applied the Laplace transform method to obtain the solutions and to see the impact of hybrid nanofluids and fractional parameter $$\alpha $$ respectively. We compared the present results with the recently published work (Nehad et al, Adv. Mech. Eng. 11(7): 1 (2019)) with Caputo fractional derivative. As a result, we have found that the present solutions are best to describe the memory concept of temperature and velocity. For small values of fractional parameter, temperature and velocity have maximum values and for larger values of fractional parameter, temperature and velocity have minimum values. Further, rate of heat transfer and skin friction are also computed in tabular forms and it is found that Nusselt number with CPC is much less than that is computed with Caputo fractional derivative for greater values of fractional parameter $$\alpha $$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.