Abstract

Many complex fluids exhibit power-law responses in their relaxation modulus; examples include foods, soft solids, fractal gels, and other polydisperse systems. In the present study we investigate the rheological characteristics of such materials beyond the linear regime using a gluten-water gel as a prototypical system. The material functions of gluten dough under finite strains can be described by combining the linear viscoelastic response of a critical gel [Chambon, and Winter, J. Rheol. 31, 683–697 (1987)] with a Lodge rubberlike network to develop a frame invariant constitutive equation [Winter and Mours, Adv. Polym. Sci. 134, 165–233 (1997)]. This generalized gel equation is a simple but accurate description of the material functions in the linear regime and also at large strains, using only two parameters. We compare the model predictions with experimental measurements in transient shear and elongational flows of gluten gels over a wide range of deformation rates. An essential feature of both the ex...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.