Abstract

Abstract Let M = Q(i √d) be any imaginary quadratic field with a positive square-free d. Consider the polynomial f(x) = x3 − ax2 − (a + 3)x − 1 with a parameter a ∈ ℤ. Let K = M(α), where α is a root of f. This is an infinite parametric family of sextic fields depending on two parameters, a and d. Applying relative Thue’s equations we determine the relative power integral bases of these sextic fields over their quadratic subfields. Using these results we also determine generators of (absolute) power integral bases of the sextic fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.