Abstract
A voting situation is given by a set of voters and the rules of legislation that determine minimal requirements for a group of voters to pass a motion. A priori measures of voting power, such as the Shapley-Shubik index and the Banzhaf value, show the influence of the individual players in a voting situation and are calculated by looking at marginal contributions in a simple game consisting of winning and losing coalitions derived from the legislative rules.We introduce a new way to calculate these measures directly from the set of minimal winning coalitions and derive explicit formulae for the Shapley-Shubik and Banzhaf values. This new approach logically appealing as it writes measures as functions of the rules of the legislation. For certain classes of games that arise naturally in applications the logical shortcut drastically simplifies the numerical calculations to obtain the indices. The technique generalises directly to all semivalues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.