Abstract
Wavelength separation and detection is generally performed by spatial dispersal of incident light onto separate detectors, or by appropriate wavelength-selective filters. Here we demonstrate direct wavelength determination of monochromatic light in a power-independent fashion with a single metal-insulator-metal device. This simple platform allows facile fabrication and scaling, and may be useful for on-chip optical communications. Although a single wavelength is power-independent, with two or more concurrent input signals, the output obeys a simple current sum rule, allowing the output to be tuned by choosing the input wavelengths and power. Finally, we demonstrate real-time deconvolution of three different wavelength asynchronous signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.