Abstract

Wave is inherently characterized by disorder and randomness, which is a great challenge for the conventional wave-based triboelectric nanogenerator (W-TENG) and necessitates conducting adaptability research on the device. Therefore, we proposed a morphological transformation strategy, that is, W-TENG can actively transform the motion patterns of self-structure to accommodate the variations in waves and achieve power improvement. And a morphological transformation TENG (MT-TENG) with multi-mode operation is developed for harvesting irregular wave energy. Furthermore, the disorder wave motion is transformed into a bidirectional continuous rotation of power generation units, which realizes the continuous waveform output. Experimental results demonstrate that the wave power grows by 9.22 times with frequency increase, and the device's performance increases by 114.136 times utilizing this strategy. MT-TENG can output 39.67 mA through the energy management circuit (EMC) and a peak power density of 30.62 W/m3 under the wave excitation of 1.1 Hz. Finally, the self-powered environmental monitoring system is constructed, which can illuminate ten 30 W LEDs in series and provide a continuous energy supply to the wireless sensor module. This work presents a research paradigm for the design of wave-environment adaptability, holding significant implications for improving performance and constructing self-powered sensing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call