Abstract

The average power output of multiple Savonius wind turbines optimally arranged in a cluster is improved significantly compared to that of an isolated turbine due to the coupling effect. Previous investigations focused on the influence of the configuration and the initial phase angles of Savonius turbines operating at the same rotational speed in a cluster. This paper proposes to adopt the variable-speed control method to improve the power output of a three-turbine cluster, and simultaneously avoid the requirement for the accurate initial phase angle settings of the turbines. The Taguchi method is used to optimize the configuration of the cluster. The distances between the centers of adjacent turbines (L1-2, L1-3), the configuration angles (θ1-2, θ1-3), and the combination of rotational directions (RD) are taken as Taguchi experimental factors. The optimal configuration of the cluster is determined to be L1-2 = 2.0D, L1-3 = 2.4D, θ1-2 = 110°, θ1-3 = 110°, and RD = (-,+,-). The influence strength of the factors is ranked as configuration angle, RD, and distance between turbines. In addition, the average power coefficient of the turbines in the optimal cluster is 1.425 times that of an isolated turbine and the tip speed ratios of the three turbines are 1.13, 1.14, and 1.09.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.