Abstract

The increasing integration of grid-connected photovoltaic (PV) inverters and inverter-based resource (IBR) systems into the power grid emphasizes the critical need for standardized procedures to ensure their reliability and effective grid support functions. This research is driven by the gap in standardized testing methodologies for smart inverters, which are pivotal for the stability and quality of power in distributed energy systems. We used a Power Hardware-in-the-Loop (PHIL) laboratory setup to conduct a comprehensive analysis of smart inverters within a simulated real-world grid environment. Our approach integrates a Distributed Energy Resource Management System (DERMS) with PHIL testing to evaluate the smart inverter’s performance across various operational modes. The detailed test protocols mimic real-world grid conditions, enabling the examination of the inverter’s dynamic response to grid disturbances, control strategies, and communication protocols. The primary aim of this study is to rigorously test and validate the primary functions of smart inverters, focusing on their impact on overall grid stability and power quality management. This includes advanced features like Volt–VAR, Volt–Watt, dynamic power factor control, and the seamless integration of smart inverters into DERMSs and Advanced Distribution Management Systems (ADMSs). Furthermore, we aim to bridge the current gap in standardized testing procedures, contributing to the establishment of robust standards and operating protocols for smart inverter integration into the grid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call