Abstract

We have measured the microwave power dependence of the surface impedance Zs of YBa2Cu3Ox thin films up to very high microwave power levels. Films with different crystal qualities, including one with a bicrystal Josephson junction, were investigated. The experiments included both frequency-domain and pulsed time-domain measurements using a 14 GHz TE011 dielectric cavity. Our results demonstrate that the dissipation of heat, generated by rf currents in the superconducting film, contributes to the observed nonlinearities in the surface resistance. The relative extent of this contribution is determined primarily by the film quality. A simple Fabry-Perot resonator model, combined with a cavity heat transfer model, was used to analyze the effects of such nonlinearities on the electromagnetic response of the dielectric cavity to a pulsed input signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call