Abstract

This paper examines the performance of a new Marnoch heat engine, which uses dry air and a pneumatic piston assembly to convert thermal energy to electricity. The system has unique capabilities of operating over temperature differentials less than 100 K. Unlike a common Stirling engine, the heat exchangers and piston assembly are not co-located, which is beneficial for positioning of heat exchangers in various configurations. This paper presents an operational laboratory-scale, proof-of-concept Marnoch heat engine (MHE), including its performance and power generation capabilities. It also presents a thermodynamic analysis of the system. Based on the MHE results, component modifications are made to improve its performance. The configuration has an efficiency of about thirty percent of a Carnot heat engine operating in the temperature range between 272 K and 372 K. Experimental data is acquired to provide verification of the predictive model, as well as demonstration of the MHE’s capabilities for efficient generation of electricity from waste heat sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.