Abstract

A Dynamic Bayesian network (DBN) model for solar power generation forecasting in photovoltaic (PV) solar plants is proposed in this paper. The key idea is to fuse sensor data, operational indicators, meteorological data, lagged output power information, and model errors for more accurate short-term (e.g., hours) and mid-term (e.g., days to weeks) power generation forecasting. The proposed DBN augments automated data-driven structure learning with expert knowledge encoding using continuous and categorical data given constraints to represent causal relationships within a solar inverter system. In addition, an error compensation mechanism that uses an error node to capture the temporal fluctuation caused by system degradation or failures is proposed to capture temporal fluctuation. The effectiveness of the DBN on solar power generation forecasting was evaluated by rolling window analysis with one-year testing data collected from a local solar plant. The proposed DBN is compared with four state-of-art methods including support-vector regression (SVR), k-nearest neighbors (kNN), artificial neural network (ANN), and long short-term memory (LSTM) models. The results show that the proposed DBN achieves better accuracy in general, and it is not as data-hungry as some neural network-based models. The proposed DBN is also shown to have robust and consistent forecasting power with different forecasting horizons. The accuracy is 92% - 95% from one hour to one week ahead forecasting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call