Abstract

This paper presents an application of genetic algorithms (GA) for solving the long-term power generation expansion planning (PGEP) problem, a highly constrained nonlinear discrete optimization problem. The problem is formulated into a mixed integer nonlinear programming (MINLP) program that determines the most economical investment plan for additional thermal power generating units over a planning horizon, subject to the requirements of power demands, power capacities, loss of load probability (LOLP) levels, locations, and environmental limitations. Computational results show that the GA-based heuristic method can solve the PGEP problem effectively and more efficiently at a significant saving in runtime, when compared with a commercial optimization package. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.