Abstract
Photovoltaic (PV) microgrids comprise a multitude of small PV power stations distributed across a specific geographical area in a decentralized manner. Computational services for forecasting the output power of power stations are crucial for optimizing resource deployment. This paper proposes a deep-learning-based architecture for short-term prediction of PV power. Firstly, in order to make full use of the spatial information between different power stations, a spatio–temporal feature fusion method is proposed. This method is capable of exploiting both the power information of neighboring power stations with strong correlations and meteorological information with the PV feature data of the target power station. By using a multiscale convolutional neural network–long short-term memory (CNN-LSTM) network model, it is capable of generating a PV feature dataset containing spatio–temporal attributes that expand the data source and enhance the feature constraints. It is capable of predicting the output power sequences of power stations in PV microgrids with high model generalization and responsiveness. To validate the effectiveness of the proposed framework, an extensive numerical analysis is also conducted based on a real-world PV dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.