Abstract
We investigate mode coupling in a multimode graded-index microstructured polymer optical fiber (GI mPOF) with a solid core by solving the time-independent power flow equation (TI PFE). Using launch beams with various radial offsets, it is possible to calculate for such an optical fiber the transients of the modal power distribution, the length Lc at which an equilibrium mode distribution (EMD) is reached, and the length zs for establishing a steady-state distribution (SSD). In contrast to the conventional GI POF, the GI mPOF explored in this study achieves the EMD at a shorter length Lc. The earlier shift to the phase of slower bandwidth decrease would result from the shorter Lc. These results are helpful for the implementation of multimode GI mPOFs as a part of communications and optical fiber sensory systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.