Abstract

Recent improvements in shipboard systems focus on the use of new technological systems and the adoption of innovative operating strategies for both increasing energy efficiency and reduce gas emissions. In such a context, this article studies a ship power system, where an energy storage system and a tailored energy management system are applied. It focuses on a detailed model of the on-board power system and points out a scenario of analysis larger than those usually adopted in the literature. The model is carried out with reference to DC, AC and hybrid AC/DC power grid architectures, by means of a power flow approach. The strategy of the energy management system optimally controls the on-board power system integrated with a battery storage device. The strategy aims to minimizes fuel consumption of the prime movers, while satisfying time-varying load demand under different operating scenarios. The procedure, tested on actual operative conditions of a supply vessel, shows feasibility and effectiveness of the power flow approach, giving evidence to the reduction of fuel consumption, while the correct operation of the power system is guaranteed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.