Abstract

Pressure retarded osmosis (PRO) is a process that allow to generate energy from osmotic gradient. This process uses selective membranes in order to produce electrical energy through a hydraulic turbine. PRO can be used as a renewable energy technology where water resources are inexhaustible. PRO has the advantage of knowing when and how much energy will be produced. Unfortunately at the moment there are certain limiting factors concerning membrane and module characteristics that have prevented PRO to be fully exploited at full-scale. This study aims to assess the impact of hypersaline draw solutions (60–180 g L−1), membrane characteristics such as structural parameter, module membrane surface and permeability coefficients on the net energy generated by single-staged full-scale PRO system with up to 8 spiral wound membrane modules (SWMMs) in series in a pressure vessel. To carry out this study, characteristics of existing PRO membranes at lab-scale were scaled up to 8 inches SWMM. The results showed the change in the optimal operating parameters with the change of membrane characteristics and draw solution concentration. This study concluded that single-staged full-scale PRO process would be viable from an energy point of view if membranes were manufactured on an industrial scale and with the characteristics of existing membranes on a laboratory scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call