Abstract

The power factor in electrical power systems is of paramount importance because of the influence on the economic cost of energy consumption as well as the power quality requested by the grid. Low power factor affects both electrical consumers and suppliers due to an increase in current requirements for the installation, bigger sizing of industrial equipment, bigger conductor wiring that can sustain higher currents, and additional voltage regulators for the equipment. In this work, we present a technique for predicting power factor variations in three phase electrical power systems, using machine learning algorithms. The proposed model was developed and tested in medium voltage installations and was found to be fairly accurate thus representing a cost reduced approach for power quality monitoring. The model can be modified to predict the variation of the power factor, taking into account removable energy sources connected to the grid. This new way of analyzing the behavior of the power factor through prediction has the potential to facilitate decision-making by customers, reduce maintenance costs, reduce the probability of injecting disturbances into the network, and above all affords a reliable model of behavior without the need for real-time monitoring, which represents a potential cost reduction for the consumer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.