Abstract

The receiver sensitivity is a very important metric in optical communication links operating at low received signal powers. Phase sensitive optical amplifiers (PSAs) can amplify optical signals without excess noise, thus providing a fundamental sensitivity improvement of 3 dB when employed as a pre-amplifier compared to conventional erbium doped fiber amplifiers (EDFA). In this letter, we investigate, both theoretically and experimentally, the sensitivities achieved using power efficient multi-dimensional modulation formats such as M-ary pulse position modulation format (M-PPM) and M-PPM combined with quadrature phase shift keying (QPSK) along with a near-noiseless PSA pre-amplified coherent intradyne receiver. We find that at high signal to noise ratios (SNRs) corresponding to low bit-error-rates (BER), M-PPM+QPSK results in the best sensitivity, which is improved with the order M, while at low SNRs corresponding to high BER (~14% where 100% overhead forward error correction codes (FEC) would be needed to recover the data), QPSK is the most sensitive format, while at the same time providing the best spectral efficiency. We report experimental sensitivities of 2.1 photons per information bit (PPB) at a pre-FEC BER = 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−3</sup> using 64-PPM+QPSK and assuming 7% FEC, and 0.8 PPB at a pre-FEC BER = 0.14 using QPSK and assuming 100% FEC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.