Abstract
In modern era the utilization of battery empowered systems is growing exponentially. In the goal to achieve an optimal system performance, the employment of a BMS (Battery Management System) is inevitable. The recent sophistications in the area of BMSs are demanding more and more processing resources. Reducing the BMS power consumption is becoming one of the most difficult industrial challenges. Most of efforts to achieve this goal are focused on improving the embedded systems design, but very few studies target to exploit the input signal time-varying nature. This work aims to achieve power efficiency by smartly adapting the system activity to the input signal local variations. In this context a novel A/D conversion approach is derived. The proposed solution, based on the LCSS (Level Crossing Sampling Scheme) presents an ADC (A/D Converter), able to adapt its acquisition rate according to the input signal variations. In fact, the principle is to smartly exploit the signal local characteristics to acquire only the relevant signal parts at relevant sampling rate. The idea offers a significant reduction in acquired number of samples and hence promises a drastic reduction in the system power consumption compared to the classical approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.