Abstract

AbstractNowadays, copper nitride (Cu3N) is of great interest as a new solar absorber material, flexible and lightweight thin film solar cells. This material is a metastable semiconductor, nontoxic, composed of earth‐abundant elements, and its band gap energy can be easily tunable in the range 1.4–1.8 eV. For this reason, it has been proposed for many applications in the solar energy conversion field. The main aim of this work is to evaluate the properties of the Cu3N thin films fabricated by reactive radio‐frequency (RF) magnetron sputtering at different RF power values to determine its potential as light absorber. The Cu3N films were fabricated at room temperature from a Cu metallic target at the RF power ranged from 25 to 200 W onto different substrates (silicon and glass). The pure nitrogen flux was set to 20 sccm, and the working pressures were set to 3.5 Pa and 5 Pa. The X‐ray diffraction results showed a transition from (100) to (111) preferred orientations when RF power increased; the atomic force microscopy images revealed a granular morphology, while Fourier transform infrared spectroscopy and Raman spectra exhibited the characteristics peaks related to Cu–N bonds, which became narrower when the RF power increased. Finally, to stablish the suitability of these films as absorber, the band gap energy was calculated from transmission spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.