Abstract
We generalize the power divergence (PD) family of statistics to the two-parameter logistic IRT model for the purpose of constructing hypothesis tests and confidence intervals of the person parameter. The well-known score test statistic is a special case of the proposed PD family. We also prove the proposed PD statistics are asymptotically equivalent and converge in distribution to [Formula: see text]. In addition, a moment matching method is introduced to compare statistics and choose the optimal one within the PD family. Simulation results suggest that the coverage rate of the associated confidence interval is well controlled even under small sample sizes for some PD statistics. Compared to some other approaches, the associated confidence intervals exhibit smaller lengths while maintaining adequate coverage rates. The utilities of the proposed method are demonstrated by analyzing a real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.