Abstract

In this paper, a microscopic approach for the calculation of partial and total power dissipation from energy losses by collisions is considered and applied in the case of N2O low pressure RF discharges. This approach is based on a Monte Carlo technique in a particle model permitting sampling of the energy deposited by different inelastic electron–N2O collisions. The calculated power densities presented in this paper are in good agreement with the experimental results and those obtained by the classical macroscopic formula based on spatio-temporal integration of the product of current density and electrical field. This microscopic approach presents, however, a major advantage in comparison with the classical method (which only offers the possibility to calculate the global power dissipation) by making possible the calculation of all the power density terms, thereby permitting one to examine the relative contribution of each collision process in the power dissipation. Its application to N2O electronegative discharges, at 503 K gas temperature, several RF voltages and two different gas pressures shows how the power is dissipated through electron–gas processes. The power density variation is found to be proportional to the electron density variation brought about by the changes in attachment (i.e. e + N2O → N2 + O−), detachment (i.e. NO− + N2O → NO + N2O + e) and ionization (i.e. e + N2 O → N2O+ + 2e) processes. The role of each of these processes is fully studied with our particle model in order to explain the dissipated power variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.