Abstract

We have studied the microwave properties of 0.4 μm thick YBa2Cu3O7−x (YBCO) films on polycrystalline substrates with ion-beam-assisted-deposited yttria-stabilized zirconia buffer layers using a parallel-plate resonator technique at 10 GHz. The YBCO films with similar in-plane texture grown on both forsterite and Ni-based alloy substrates show similar microwave properties. We measure low-power surface resistance Rs values of about 0.5 mΩ at 76 K and 0.15 mΩ at 4 K for films with an in-plane mosaic spread of about 7°. Single-tone power-dependence measurements show that the surface resistance and the surface reactance increase linearly and by the same amount with increasing microwave field level. At intermediate power levels, the intermodulation measurements show odd-order intermodulation products that increase quadratically with two-tone input power. These results indicate a hysteretic vortex penetration mechanism in the weak links as the most plausible source of the observed nonlinearities in these films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.