Abstract

Measuring and controlling the power density distribution of electron beams used for welding is critical for producing repeatable welds and for transferring welding parameters between different machines. On any given machine, the power density distribution is controlled by defocusing the beam relative to its sharpest focused condition. However, measuring the power density distribution can be difficult due to the intense nature of welding beams and is further complicated by imperfect electron optics that can distort the beam, making it difficult to quantify. The enhanced modified Faraday cup (EMFC) diagnostic method was used here for beam analysis that utilizes computed tomography to reconstruct the beam’s power density distribution. These results were compared to the International Standards Organization (ISO) method for characterizing laser beams using a second-moment D4σ calculation. For ideal Gaussian-shaped beams, both methods would give the same result. However, for imperfect beams, the calculated D4σ diameter was shown to be about 25% larger relative to the FWe2 diameter measured by the EMFC due to the heavier weighting of data in the tails of the beam by D4σ. Although both methods produce repeatable welds, it is important to understand the differences in the reported beam diameters, divergence angles, and beam parameter products when transferring parameters between machines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call