Abstract

AbstractIn this paper a design strategy for MUX, XOR and D‐latch source coupled logic (SCL) gates is proposed. To this end, an analytical model of the delay and the noise margin as a function of the transistors' aspect ratio and bias current is first introduced. Successively, analytical equations of the transistors' aspect ratio to meet a given noise margin specification are derived as a function of the bias current, and are then used along with the delay model to express the delay as an explicit function of the bias current and noise margin.The simplified delay expression explicitly relates speed performance to power dissipation and the noise margin, thereby providing the designer with the required understanding of the trade‐offs involved in the design. Therefore, the criteria proposed allow the designer to consciously manage the power‐delay trade‐off. The delay dependence on the logic swing is also investigated with results showing that this delay is not necessarily reduced by reducing the logic swing, in contrast with the usual assumption. Since the results obtained are valid for all SCL gates and are independent of the CMOS process used, the guidelines provided afford a deeper understanding of SCL gates from a design point of view. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.