Abstract
In various applications, the effect of errors in gradient-based iterations is of particular importance when seeking saddle points of the Lagrangian function associated with constrained convex optimization problems. Of particular interest here are problems arising in power control applications, where network utility is maximized subject to minimum signal-to-interference-plus-noise ratio (SINR) constraints, maximum interference constraints, maximum received power constraints, or simultaneous minimum and maximum SINR constraints. Especially when the gradient iterations are executed in a disributed fashion, imperfect exchanges among the link nodes may result in erroneous gradient vectors. In order to assess and cope with such errors, two running averages (ergodic sequences) are formed from the iterates generated by the perturbed saddle point method, each with complementary strengths. Under the assumptions of problem convexity and error boundedness, bounds on the constraint violation and the suboptimality per iteration index are derived. The two types of running averages are tested on a spectrum sharing problem with minimum and maximum SINR constraints, as well as maximum interference constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.