Abstract

Transmit power in wireless cellular networks is a key degree of freedom in the management of interference, energy, and connectivity. Power control in both the uplink and downlink of a cellular network has been extensively studied, especially over the last 15 years, and some of the results have enabled the continuous evolution and significant impact of the digital cellular technology. This survey provides a comprehensive discussion of the models, algorithms, analysis, and methodologies in this vast and growing literature. It starts with a taxonomy of the wide range of power control problem formulations, and progresses from the basic formulation to more sophisticated ones. When transmit power is the only set of optimization variables, algorithms for fixed SIR are presented first, before turning to their robust versions and joint SIR and power optimization. This is followed by opportunistic and non-cooperative power control. Then joint control of power together with beamforming pattern, base station assignment, spectrum allocation, and transmit schedule is surveyed\break one-by-one. Throughout the survey, we highlight the use of mathematical language and tools in the study of power control, including optimization theory, control theory, game theory, and linear algebra. Practical implementations of some of the algorithms in operational networks are discussed in the concluding section. As illustrated by the open problems presented at the end of most chapters, in the area of power control in cellular networks, there are still many under-explored directions and unresolved issues that remain theoretically challenging and practically important..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.