Abstract

With cellular phones mass-market consumer items, the next frontier is mobile multimedia communications. This situation raises the question of how to perform power control for information sources other than voice. To explore this issue, we use the concepts and mathematics of microeconomics and game theory. In this context, the quality of service of a telephone call is referred to as the and the distributed power control problem for a CDMA telephone is a noncooperative game. The power control algorithm corresponds to a strategy that has a locally optimum operating point referred to as a Nash equilibrium. The telephone power control algorithm is also efficient, in the terminology of game theory. When we apply the same approach to power control in wireless data transmissions, we find that the corresponding strategy, while locally optimum, is not Pareto efficient. Relative to the telephone algorithm, there are other algorithms that produce higher utility for at least one terminal, without decreasing the utility for any other terminal. This article presents one such algorithm. The algorithm includes a price function proportional to transmitter power. When terminals adjust their power levels to maximize the net utility (utility-price), they arrive at lower power levels and higher utility than they achieve when they individually strive to maximize utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.