Abstract

In this paper, the resource allocation strategy is investigated for a spectrum sharing two-tier femtocell networks, in which a central macrocell is underlaid with distributed femtocells. The spectral radius is introduced to address the conditions that any feasible set of users’ signal-to-interference-plus-noise ratio requirements should satisfy in femtocell networks. To develop power allocation scheme with the derived conditions, a Stackelberg game is formulated, which aims at the utility maximization both of the macrocell user and femtocell users. The distributed power control algorithm is given to reduce the cross-tier interference between the macrocell and femtocell with same channel. At last, admission control algorithm is proposed, aiming to exploit the network resource effectively. Numerical results show that the proposed resource allocation schemes are effective in reducing power consumption and more suitable in the densely deployed scenario of the femtocell networks. Meanwhile, it also presents that the distributed power allocation scheme combined with admission control can protect the performance of all active femtocell users in a robust manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call