Abstract

The power consumption of actuators is an important concern for the spacecraft attitude control system. This paper presents a power consumption reduction method for permanent magnet biased active magnetic bearings (AMBs) during torque output of control moment gyros (CMGs). For simplicity of analysis, a simple single degree-of-freedom (DOF) AMB system undergoing an external load force is first presented. An operating point adaptive regulation based on current-integral feedforward method is proposed to realize the coil current reduction with a reference position offset. Then the proposed method is extended to the case of the 4-DOF AMB-rotor system. In order to improve the dynamic response of the current-integral output, a dynamic regulator is incorporated into the feedforward loop. The parameter range for stability and dynamic properties of the AMB-rotor system with and without using the dynamic regulator have also be compared and discussed. Finally, experimental results on a developed magnetically suspended double-gimbal CMG prototype validate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call