Abstract

This study theoretically analyzed the cutting process of castor and determined the structural parameters of the key component of the castor disc-cutting device, aiming to obtain the optimal operation parameter combination and reduce the cutting resistance and power consumption during the harvesting process. The effects of the cutting-disc thickness, cutting-disc rotational speed, feeding speed, and edge angle on the cutting power consumption were studied using an orthogonal rotation combination experiment. The response surface method was used to optimize the parameters, and the mathematical relationship model between the cutting power consumption and each factor was established to determine the optimal parameter combination for disc cutting. The simulation results showed that the optimal combination of cutting parameters was cutting-disc thickness of 3 mm, cutting-disc rotational speed of 550 r/min, feeding speed of 0.6 m/s, and edge angle of 20°. Under these conditions, the cutting power consumption was 1.20375 J. The test results were basically consistent with the model prediction results. Therefore, this study provided a theoretical basis and reference for the design and improvement of castor harvesters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call