Abstract

The power recovery characteristics of an in-line direct beam converter provided with electrostatic electron suppressor were studied numerically by tracing the orbits of fast primary ions and secondary charged particles generated along their beam path by collision with background gas molecules. It is shown that, in reference to the electrostatic field potential at the point of impact, the energy distribution of secondary ions impinging on the suppressor has two peaks—one corresponding to a zone of high positive potential surrounding the collector and the other to one of slightly negative potential around the electron suppressor. Secondary electron emission from the suppressor is ascribed mainly to the latter peak, associated with impingement of slower secondary ions. Far much power consumed in secondary particle acceleration is spent for emitting electrons from the suppressor than for secondary ions generated by beam-gas collision. The upper limit of background pressure is discussed on the basis of criteria prescribed for restricting the power consumed in this secondary particle acceleration, as for practical convenience of electrode cooling. Numerical examples are given of calculations based on particle trajectory analysis of both primary ions and secondary particles, for the case of a 100 keV-proton sheet beam 10 cm thick of 35mA/cm2 current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.