Abstract
Dynamic analysis is extensively used to study the behavior of continuous and lumped parameter linear systems. In addition to the physical space, analyses can also be performed in the modal space where very useful frequency information of the system can be extracted. More specifically, modal analysis can be used for the analysis and controller design of dynamic systems, where reduction of model complexity without degrading its accuracy is often required. The reduction of modal models has been extensively studied and many reduction techniques are available. The majority of these techniques use frequency as the metric to determine the reduced model. This paper describes a new method for calculating modal decompositions of lumped parameter systems with the use of the bond graph formulation. The modal decomposition is developed through a power conserving coordinate transformation. The generated modal decomposition model is then used as the basis for reducing its size and complexity. The model reduction approach is based on the previously developed model order reduction algorithm (MORA), which uses the energy-based activity metric in order to generate a series of reduced models. The activity metric was originally developed for the generic case of nonlinear systems; however, in this work, the activity metric is adapted for the case of linear systems with single harmonic excitation. In this case closed form expressions are derived for the calculation of activity. An example is provided to demonstrate the power conserving transformation, calculation of the modal power and the elimination of unimportant modes or modal elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.