Abstract

Decarbonizing the energy intensive iron and steel industry is in urgent need to meet the ambitious environmental goal. Efficient and clean use of the blast furnace gas (BFG) through combined-cycle gas turbine (CCGT) power plant provides feasible pathway to realize a near-term CO2 reduction when integrated with carbon capture. This paper presents effective control strategies to coordinate the operation of BFG-fired CCGT plant and solvent-based post-combustion CO2 capture (PCC) process based on the in-depth understanding of the interactions among process dynamics in different time-scales for carbon, heat and electricity. The energy storage capability of the PCC process is explored in addition to the CO2 capture and the reboiler steam flowrate used for solvent regeneration is incorporated into the BFG-fired CCGT control loop. Considering this, two coordinated control strategies are developed for the BFG-fired CCGT-PCC, first based on the conventional PI control and then with advanced model predictive control (MPC) approaches. The coordinated strategies are demonstrated to improve the power ramping performance of the CCGT with little degradation on the PCC operation, thus providing better support for the reliability of the power system in the context of increasing penetration of renewable energy resources. Moreover, by considering the impact of disturbances into the predictive models, the MPC-based coordinated control can well alleviate the influence of BFG fluctuations, guaranteeing a stable operation of the integrated plant. This paper points to the new direction of using PCC for more flexible power regulation of adjustable sources in low-carbon energy systems with penetration of intermittent renewable powers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.