Abstract

The use of a multiple-input buck-boost converter for budgeting power between different energy sources is discussed. It is shown mathematically that the idealized converter can accommodate arbitrary power commands for each input source while maintaining a prescribed output voltage. Power budgeting is demonstrated experimentally for a real converter under various circumstances, including a two-input (solar and line-powered) system. A closed-loop control example involving simultaneous tracking of output voltage and set-point tracking of the solar array shows that an autonomous system is realizable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.