Abstract

Sufficient power margin is investigated for ten-channels WDM transmission over 68,908 km by using cascaded in-line semiconductor optical amplifier for the differential phase-shift keying (DPSK) modulation format for the first time. For this, we used the structural optimization and placement scheme of semiconductor optical amplifiers (SOAs) for long-haul WDM transmission. The SOA model for in-line amplifier has low crosstalk, ASE noise power and low noise figure with sufficient gain. The impact of noise figure, amplification factor, ASE noise power, optical gain and crosstalk with signal input power for the SOA model has been illustrated, which shows that 400 mA is the optimum bias current. We observed that the optimized optical filter bandwidth for the 100 GHz channel spacing is 0.4 nm. We observe that as we decrease the channel spacing, the quality of signal is degraded. We show that the optimum span scheme-1 is used up to a transmission distance of 68,908 km with good quality for power margin more than 24 dB. This placement scheme of SOAs shows good power budget for long transmission distance. We show the optical spectrum and clear eye diagram at the transmission distance of 68,908 km for optimum span schemes. Finally, we investigate the maximum transmission distance with decrease in channel spacing, i.e., 20 and 50 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.