Abstract

Abstract The European Union guides its member states to a gradual uptake of sustainable aviation fuel (SAF) from 2% vol. in 2025 to 63% vol. by 2050 with the ReFuelEU proposal as part of the Fit-for-55 package. A promising production pathway for SAF presents itself in the Power Biomass to Liquid (PBtL) process, which converts non-crop-based biomass residue and renewable power via the Fischer–Tropsch route. In this study, a techno-economic and greenhouse gas (GHG) emission analysis of a small-scale (50 MWth) PBtL process concept, developed in the EU project FLEXCHX, is presented. The analysis is conducted with a thermodynamic process model implemented in Aspen Plus®, which relies on experimental project data. For the PBtL base case production costs of 1.09 €2020/l are estimated, whereby electricity and investment into the alkaline electrolyzer constitute the largest cost drivers. At low electricity prices (< 39.2 €/MWh), the PBtL process is more cost effective than the reference process Biomass to Liquid (BtL). To identify improvements to the base case design, different design options are considered under varying economic boundary conditions: Solid oxide electrolysis is more economic than alkaline electrolysis at higher electricity prices due to its higher system efficiency. Maximizing the product yield by increased CO2 recycling is only economically reasonable below an electricity price threshold, which is found at 20 €/MWh for the base case. Further, PBtL is heavily dependent upon the availability of low GHG electricity in order to produce SAF with a low carbon footprint. Assuming full utilization of the EU’s non-crop-based biomass residues, the EU jet fuel demand for 2030 could be met with the PBtL process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call