Abstract

Automatic longitudinal control of vehicles is an automobile technology that has been implemented for many years. Connected eco-driving has the potential to extend the capability of an automatic longitudinal control by minimizing the energy consumption and emissions of the vehicle. In this paper, we propose a power-based longitudinal control algorithm for a connected eco-driving system, which takes into account the vehicle's brake specific fuel consumption or BSFC map, roadway grade, and other constraints (e.g., traffic condition ahead and traffic signal status of the upcoming intersection) in the calculation of an optimal speed profile in terms of energy savings and emissions reduction. The performance of the proposed algorithm was evaluated through extensive numerical analyses of driving along a signalized arterial, and the results validated the effectiveness of the proposed algorithm as compared with baseline and an existing eco-driving algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.