Abstract

Predictive models enable a better understanding of the performance characteristics of applications on multicore systems. Previous work has utilized performance counters in a system-centered approach to model power consumption for the system, CPU, and memory components. Often, these approaches use the same group of counters across different applications. In contrast, we develop application-centric models (based upon performance counters) for the runtime and power consumption of the system, CPU, and memory components. Our work analyzes four Hybrid (MPI/OpenMP) applications: the NAS Parallel Multizone Benchmarks (BT-MZ, SP-MZ, LU-MZ) and a Gyrokinetic Toroidal Code, GTC. Our models show that cache utilization (L1/L2), branch instructions, TLB data misses, and system resource stalls affect the performance of each application and performance component differently. We show that the L2 total cache hits counter affects performance across all applications. The models are validated for the system and component power measurements with an error rate less than 3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.