Abstract

This work illustrates the design of the cell-based variable-gain amplifier (VGA) with less power consumption and improved noise margin. The variable gain amplifier is incorporated into the current wireless front-end modules. The body-bias technique in the n channel MOSFET (n-MOS) devices greatly aided in the power reduction of the cells. The device characteristics were fine-tuned to get better gain and bandwidth and reduced the supply voltage. This technique ultimately reduced the number of cell stages required to meet the expectation. The reduction of the supply voltage and the technology upscaling helped to improve the noise margin. The presented unit cell achieved accurate dB-linear characteristics across a wide tuning range, based on a unique gain control method with a combination of sub-threshold n-MOS and saturation n-MOS transistors as active loads. A 7-cell reconfigurable VGA is simulated in 0.18-[Formula: see text]m Complementary MOSFET technology to verify the concept. The simulation results showed that the bandwidth of the VGA is greater than 2.5[Formula: see text]GHz, while less than 0.78[Formula: see text]mW is consumed from a 1.5-V supply. A noise figure of 23.7[Formula: see text]dB is measured. Also, the VGA achieves a gain control range of 19[Formula: see text]dB with a gain error less than [Formula: see text][Formula: see text]dB or 26.3%. These results make the designed amplifier adequate for high-frequency applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.