Abstract

This paper presents a design methodology for power and area minimization of flexible FFT processors. The methodology is based on the power-area tradeoff space obtained by adjusting algorithm, architecture, and circuit variables. Radix factorization is the main technique for achieving high energy efficiency with flexibility, followed by architecture parallelism and delay line circuits. The flexibility is provided by reconfigurable processing units that support radix-2/4/8/16 factorizations. As a proof of concept, a 128- to 2048-point FFT processor for 3GPP-LTE standard has been implemented in a 65-nm CMOS process. The processor designed for minimum power-area product is integrated in 1.25 × 1.1 mm2 and dissipates 4.05 mW at 0.45 V for the 20 MHz LTE bandwidth. The energy dissipation ranging from 2.5 to 103.7 nJ/FFT for 128 to 2048 points makes it the lowest energy flexible FFT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.