Abstract

Populations derived by multiple backcrosses are potentially useful for quantitative trait locus (QTL) mapping studies. Comparisons of relative power to detect QTL using populations derived by multiple back-crosses are needed to make decisions when mapping projects are initiated. The objective of this study was to theoretically compare the power to detect QTL in populations derived by multiple backcrosses relative to mapping in a recombinant inbred population of equal size. Backcrossing results in a reduction in genetic variance with each generation and also results in an increasing frequency of the recurrent parent marker genotype. The relevant outcome for QTL mapping is a reduction in genetic variance to partition between marker genotype classes and increasing unbalance of the number of individuals contributing to the mean of the marker genotypes. Both of these factors lead to a decrease in the power to detect a QTL as the number of backcross generations increases. Experimental error was held constant with the populations compared. From a theoretical standpoint, backcross-derived populations offer few advantages for QTL detection. If, however, a backcrossing approach is the most efficient method to achieve a desired breeding objective and if QTL detection is an objective of equal or less importance, backcross-derived populations are a reasonable approach to QTL detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call