Abstract

In this paper, a unified approach for power allocation (PA) in multi-hop orthogonal frequency division multiplexing (OFDM) amplify-and-forward (AF) relaying systems is presented. In the proposed approach, we consider short and long term individual and total power constraints at the source and relays, and devise low complexity PA algorithms when wireless links are subject to channel path-loss and small-scale Rayleigh fading. To manage the complexity, in the proposed formulations, we adopt a two-stage iterative approach consisting of a power distribution phase among distinct subcarriers, and a power allocation phase among different relays. In particular, aiming at improving the instantaneous rate of multi-hop transmission systems with AF relaying, we develop (i) a near-optimal iterative PA algorithm based on the exact analysis of the received SNR at the destination; (ii) a low complexity suboptimal iterative PA algorithm based on an approximate expression of the received SNR at high-SNR regime; and (iii) a low complexity non-iterative PA scheme with limited performance loss. Simulation results show the superior performance of the proposed power allocation algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.