Abstract

In this paper, we focus on the issue of security due to the open structure of the D2D Communication Underlaying Cellular Networks. In such an open scenario, the problem of interference is very serious. But luckily, the interference can be helpful from a perspective of the physical layer security. The interference caused by D2D communication could be helpful against eavesdroppers to enhance the secure communication of the cellular users when the value of the interference is proper. Note this, the physical layer security of the cellular users can be enhanced with the proper interference management based on the power allocation in D2D communication underlaying cellular networks in a probabilistic eavesdropping scenario. The problem is modeled as a Stackelberg game model. In the model, all cellular users are modeled as followers while the D2D pair is modeled as leader. A semi-centralized power allocation algorithm is proposed to converge to the Stackelberg Equilibrium. And the equilibrium is the final power allocation scheme we want. It is proved that the proposed algorithm can conclude in finite-time iterations. Numerical simulation results show that our proposed power allocation algorithm can obtain larger secrecy data rate, than the other two power allocation algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call